PERAMALAN EXPECTED CREDIT LOSS (ECL) MENGGUNAKAN MODEL ARIMA: STUDI KASUS PADA BANK BRI DAN BANK BCA

Suci Dwilianti Tolla, Vicky Vendy

Abstract


ABSTRAK

Implementasi PSAK 109 menuntut lembaga perbankan untuk menerapkan pendekatan forward-looking dalam pengukuran cadangan kerugian kredit melalui estimasi expected credit loss (ECL). Jika tidak diterapkan, bank berisiko menghadapi ketidakpatuhan regulasi, berkurangnya transparansi, serta menurunnya kepercayaan publik. Penelitian ini bertujuan untuk memperkirakan nilai ECL menggunakan model autoregressive integrated moving average (ARIMA) pada dua bank besar di indonesia, yaitu bank BRI dan bank BCA, selama periode 2004 hingga 2024. Penelitian menggunakan pendekatan kuantitatif dengan metode purposive sampling dan data sekunder berupa laporan keuangan tahunan yang memuat komponen probability of default (PD), loss given default (LGD), dan exposure at default (EAD). Model ARIMA ditentukan melalui uji stasioneritas ADF (Augmented Dickey-Fuller Test) dan KPSS (Kwiatkowski-Phillips-Schmidt-Shin Test), serta identifikasi parameter menggunakan grafik ACF (Autocorrelation Function) dan PACF (Partial Autocorrelation Function). Pemilihan model terbaik dilakukan berdasarkan nilai AIC (Akaike Information Criterion) dan BIC (Bayesian Information Criterion). Hasil penelitian menunjukkan bahwa baik Bank BRI maupun Bank BCA paling sesuai dimodelkan dengan ARIMA yang mencerminkan kesamaan karakteristik statistik pada data historis ECL kedua bank. Model yang diperoleh mampu memproyeksikan tren ECL dengan cukup akurat untuk periode 2025 hingga 2029. Penelitian ini diharapkan dapat menjadi acuan dalam penyusunan kebijakan pencadangan kerugian kredit yang lebih adaptif dan berbasis data historis.

ABSTRACT

The implementation of PSAK 109 requires banks to adopt a forward-looking approach in measuring credit loss allowances through Expected Credit Loss (ECL) estimation. Without this standard, banks may face regulatory non-compliance, reduced transparency, and declining public trust. This study estimates ECL using the Autoregressive Integrated Moving Average (ARIMA) model for Bank BRI and Bank BCA during 2004–2024. A quantitative approach with purposive sampling was applied, using annual financial statements containing Probability of Default (PD), Loss Given Default (LGD), and Exposure at Default (EAD). Model selection involved stationarity tests with the Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, parameter identification through Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF), and evaluation based on the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The results show that both banks are best represented by ARIMA indicating similar statistical patterns in their historical ECL data. These findings are expected to support the development of more adaptive and data-driven credit loss provisioning policies.

References


Al-Nsour, R., & Abuaddous, M. (2022). A Comparison Study between IFRS 9 and IAS 39 in GCC Countries. European Journal of Business and Management Research, 7(6), 7–13. https://doi.org/10.24018/ejbmr.2022.7.6.1687

Alnaa, S. E., & Ahiakpor, F. (2011). ARIMA (autoregressive integrated moving average) approach to predicting inflation in Ghana. Journal of Economics and International Finance, 3(5), 328–336. http://ssrn.com/abstract=2026012Electroniccopyavailableat:http://ssrn.com/abstract=2026012http://www.academicjournals.org/JEIF

Box, George E. P.; Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control. Holden-Day.

Breed, D. G., Hurter, J., Marimo, M., Raletjene, M., Raubenheimer, H., Tomar, V., & Verster, T. (2023). A Forward-Looking IFRS 9 Methodology, Focussing on the Incorporation of Macroeconomic and Macroprudential Information into Expected Credit Loss Calculation. Risks, 11(3), 16. https://doi.org/10.3390/risks11030059

Chen, J., Dou, Y., Ryan, S. G., & Zou, Y. (2025). The Effect of the Current Expected Credit Loss Approach on Banks’ Lending during Stress Periods: Evidence from the COVID-19 Recession. Accounting Review, 100(1), 113–138. https://doi.org/10.2308/TAR-2022-0275

Firmansyah, A., Kurniawati, L., Miftah, D., & Winarto, T. (2023). Value relevance of IFRS 9 adoption: A case study of Indonesian banking companies. Journal of Accounting and Investment, 24(2), 502–518. https://doi.org/10.18196/jai.v24i2.17574

Gornjak, M. (2017). Comparison of IAS 39 and IFRS 9: The Analysis of Replacement. International Journal of Management, Knowledge and Learning, 6(1), 115–130. https://doaj.org/article/d59cc5f823b14148878b78707bb4fe6a

Gujarati, D. (2015). Econometrics by Example Second Edition (2nd ed.).

Hartanto, A. D., & Setijaningsih, H. T. (2023). Determinan Probability of Default Dalam Perhitungan Expected Credit Loss Perbankan. Akurasi : Jurnal Studi Akuntansi Dan Keuangan, 6(1), 157–176. https://doi.org/10.29303/akurasi.v6i1.329

Hasanah, U. (2023). Peramalan BI Rate Di Indonesia dengan Metode Time Series Model ARIMA. IHTIYATH : Jurnal Manajemen Keuangan Syariah, 7(2), 141–151. https://doi.org/10.32505/ihtiyath.v7i2.7318

Heniwati, E. (2023). Implikasi Penerapan Ifrs 9 Pada Daya Prediksi Ckpn Terhadap Kerugian Kredit Bank. Media Riset Akuntansi, Auditing & Informasi, 23(2), 273–290. https://doi.org/10.25105/mraai.v23i2.16968

Khan, I., & Gunwant, D. F. (2024). “Revealing the future”: an ARIMA model analysis for predicting remittance inflows. Journal of Business and Socio-Economic Development, 4(2), 120–135. https://doi.org/10.1108/jbsed-07-2023-0055

Kyiu, A., & Tawiah, V. (2025). IFRS 9 implementation and bank risk. Accounting Forum, 49(1), 234–258. https://doi.org/10.1080/01559982.2023.2233861

Lwaho, J., & Ilembo, B. (2023). Unfolding the potential of the ARIMA model in forecasting maize production in Tanzania. Business Analyst Journal, 44(2), 128–139. https://doi.org/10.1108/baj-07-2023-0055

Miu, P., & Ozdemir, B. (2022). A coherent economic framework to model correlations between PD, LGD and EaD, and its applications in EaD modelling and IFRS-9. Journal of Risk Management in Financial Institutions, 16(1), 52–78. https://doi.org/10.69554/qcvi3102

Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Ben Taieb, S., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Cyrino Oliveira, F. L., De Baets, S., Dokumentov, A., … Ziel, F. (2022). Forecasting: theory and practice. International Journal of Forecasting, 38(3), 705–871. https://doi.org/10.1016/j.ijforecast.2021.11.001

Pokhrel, S. (2024). IFRS 9 under Stress: Loan Loss Provisioning under the Expected Credit Loss Model. SSRN (Social Science Research Network), 15(1), 37–48.

Prasetya, R., & Rokhim, R. (2021). Analysis of Bond’s IFRS 9 Expected Credit Loss using Vasicek Method. Proceedings of the 4th International Conference on Economics, Business and Economic Education Science (ICE-BEES 2021). https://doi.org/10.4108/eai.27-7-2021.2316899

Rahayu, D. (2021). Analisis Implementasi PSAK 71 Terhadap Cadangan Kerugian Penurunan Nilai (Studi Kasus Pada PT Bank XYZ Tbk). Akuntansi : Jurnal Akuntansi Integratif, 7(1), 13–25. https://doi.org/10.29080/jai.v7i1.315

Saputra, J. E., & Febrianti, W. (2025). Application of Autoregressive Integrated Moving Average ( ARIMA ) for Forecasting Inflation Rate in Indonesia. 21(2), 382–396. https://doi.org/10.20956/j.v21i2.36609

Schutte, W. D., Verster, T., Doody, D., Raubenheimer, H., & Coetzee, P. J. (2020). A proposed benchmark model using a modularised approach to calculate IFRS 9 expected credit loss. Cogent Economics and Finance, 8(1), 1–27. https://doi.org/10.1080/23322039.2020.1735681

Sugiarto, S., & Suroso, S. (2020). Innovation of impairment loss allowance model of Indonesian financial accounting standards 71. Journal of Asian Business and Economic Studies, 27(3), 267–283. https://doi.org/10.1108/JABES-11-2019-0114

Syarifuddin, S., & Pratomo, W. A. (2013). Efektivitas Penggunaan ARIMA dan VAR dalam Memproyeksi Permintaan Kredit di Indonesia. Jurnal Ekonomi Dan Keuangan, 1(6), 1–16.

Winarto, H., Poernomo, A., & Prabawa, A. (2021). Analisis Dampak Kebijakan Moneter terhadap Pertumbuhan Ekonomi di Indonesia. J-MAS (Jurnal Manajemen Dan Sains), 6(1), 34. https://doi.org/10.33087/jmas.v6i1.216




DOI: http://dx.doi.org/10.35906/equili.v14i2.2528

Article Metrics

Abstract view : 68 times
PDF (Bahasa Indonesia) - 37 times



 

 

Indexing In

 

Tools